Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production routes to bio-acetic acid: life cycle assessment.

Identifieur interne : 000178 ( Main/Exploration ); précédent : 000177; suivant : 000179

Production routes to bio-acetic acid: life cycle assessment.

Auteurs : Erik Budsberg [États-Unis] ; Rodrigo Morales-Vera [Chili] ; Jordan T. Crawford [États-Unis] ; Renata Bura [États-Unis] ; Rick Gustafson [États-Unis]

Source :

RBID : pubmed:32905422

Abstract

Background

Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.8% purity. This process has been shown to be potentially energy intensive and in this work two distillation and liquid-liquid extraction methods are evaluated to produce glacial bio-acetic acid. Method one uses ethyl acetate for extraction. Method two uses alamine and diisobutyl ketone. Additionally two different options for meeting energy demands at the biorefinery are modeled. Option one involves burning lignin and natural gas onsite to meet heat/steam and electricity demands. Option two uses only natural gas onsite to meet heat/steam demands, purchases electricity from the grid to meet biorefinery needs, and sells lignin from the poplar biomass as a co-product to a coal burning power plant to be co-fired with coal. System expansion is used to account for by-products and co-products for the main life cycle assessment. Allocation assessments are also performed to compare the life cycle tradeoffs of using system expansion, mass allocation, or economic allocation for bio-acetic acid production. Finally, a sensitivity analysis is conducted to determine potential effects of a decrease in the fermentation of glucose to acetic acid.

Results

Global warming potential (GWP) and fossil fuel use (FFU) for ethyl acetate extraction range from 1000-2500 kg CO

Conclusions

Overall the alamine/diisobutyl ketone extraction method results in lower GWP and FFU values compared to the ethyl acetate extraction method. Only the alamine/diisobutyl extraction method finds GWP and FFU values lower than those of petroleum based acetic acid. For both extraction methods, exporting lignin as a co-product produced larger GWPs and FFU values compared to burning the lignin at the biorefinery.


DOI: 10.1186/s13068-020-01784-y
PubMed: 32905422
PubMed Central: PMC7469289


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production routes to bio-acetic acid: life cycle assessment.</title>
<author>
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morales Vera, Rodrigo" sort="Morales Vera, Rodrigo" uniqKey="Morales Vera R" first="Rodrigo" last="Morales-Vera">Rodrigo Morales-Vera</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Forest Sciences, Catholic University of Maule, Center of Biotechnology of Natural Resources (CENBIO), Talca, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>School of Agricultural and Forest Sciences, Catholic University of Maule, Center of Biotechnology of Natural Resources (CENBIO), Talca</wicri:regionArea>
<wicri:noRegion>Talca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<affiliation wicri:level="2">
<nlm:affiliation>AECOM Corp, Richland, WA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>AECOM Corp, Richland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32905422</idno>
<idno type="pmid">32905422</idno>
<idno type="doi">10.1186/s13068-020-01784-y</idno>
<idno type="pmc">PMC7469289</idno>
<idno type="wicri:Area/Main/Corpus">000112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000112</idno>
<idno type="wicri:Area/Main/Curation">000112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000112</idno>
<idno type="wicri:Area/Main/Exploration">000112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production routes to bio-acetic acid: life cycle assessment.</title>
<author>
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Morales Vera, Rodrigo" sort="Morales Vera, Rodrigo" uniqKey="Morales Vera R" first="Rodrigo" last="Morales-Vera">Rodrigo Morales-Vera</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agricultural and Forest Sciences, Catholic University of Maule, Center of Biotechnology of Natural Resources (CENBIO), Talca, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>School of Agricultural and Forest Sciences, Catholic University of Maule, Center of Biotechnology of Natural Resources (CENBIO), Talca</wicri:regionArea>
<wicri:noRegion>Talca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<affiliation wicri:level="2">
<nlm:affiliation>AECOM Corp, Richland, WA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>AECOM Corp, Richland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.8% purity. This process has been shown to be potentially energy intensive and in this work two distillation and liquid-liquid extraction methods are evaluated to produce glacial bio-acetic acid. Method one uses ethyl acetate for extraction. Method two uses alamine and diisobutyl ketone. Additionally two different options for meeting energy demands at the biorefinery are modeled. Option one involves burning lignin and natural gas onsite to meet heat/steam and electricity demands. Option two uses only natural gas onsite to meet heat/steam demands, purchases electricity from the grid to meet biorefinery needs, and sells lignin from the poplar biomass as a co-product to a coal burning power plant to be co-fired with coal. System expansion is used to account for by-products and co-products for the main life cycle assessment. Allocation assessments are also performed to compare the life cycle tradeoffs of using system expansion, mass allocation, or economic allocation for bio-acetic acid production. Finally, a sensitivity analysis is conducted to determine potential effects of a decrease in the fermentation of glucose to acetic acid.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>Global warming potential (GWP) and fossil fuel use (FFU) for ethyl acetate extraction range from 1000-2500 kg CO</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusions</b>
</p>
<p>Overall the alamine/diisobutyl ketone extraction method results in lower GWP and FFU values compared to the ethyl acetate extraction method. Only the alamine/diisobutyl extraction method finds GWP and FFU values lower than those of petroleum based acetic acid. For both extraction methods, exporting lignin as a co-product produced larger GWPs and FFU values compared to burning the lignin at the biorefinery.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32905422</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Production routes to bio-acetic acid: life cycle assessment.</ArticleTitle>
<Pagination>
<MedlinePgn>154</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-020-01784-y</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.8% purity. This process has been shown to be potentially energy intensive and in this work two distillation and liquid-liquid extraction methods are evaluated to produce glacial bio-acetic acid. Method one uses ethyl acetate for extraction. Method two uses alamine and diisobutyl ketone. Additionally two different options for meeting energy demands at the biorefinery are modeled. Option one involves burning lignin and natural gas onsite to meet heat/steam and electricity demands. Option two uses only natural gas onsite to meet heat/steam demands, purchases electricity from the grid to meet biorefinery needs, and sells lignin from the poplar biomass as a co-product to a coal burning power plant to be co-fired with coal. System expansion is used to account for by-products and co-products for the main life cycle assessment. Allocation assessments are also performed to compare the life cycle tradeoffs of using system expansion, mass allocation, or economic allocation for bio-acetic acid production. Finally, a sensitivity analysis is conducted to determine potential effects of a decrease in the fermentation of glucose to acetic acid.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">Global warming potential (GWP) and fossil fuel use (FFU) for ethyl acetate extraction range from 1000-2500 kg CO
<sub>2</sub>
eq. and 32-56 GJ per tonne of acetic acid, respectively. Alamine and diisobutyl ketone extraction method GWP and FFU ranges from -370-180 kg CO
<sub>2</sub>
eq. and 15-25 GJ per tonne of acetic acid, respectively.</AbstractText>
<AbstractText Label="Conclusions" NlmCategory="UNASSIGNED">Overall the alamine/diisobutyl ketone extraction method results in lower GWP and FFU values compared to the ethyl acetate extraction method. Only the alamine/diisobutyl extraction method finds GWP and FFU values lower than those of petroleum based acetic acid. For both extraction methods, exporting lignin as a co-product produced larger GWPs and FFU values compared to burning the lignin at the biorefinery.</AbstractText>
<CopyrightInformation>© The Author(s) 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Budsberg</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-7386-514X</Identifier>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</Affiliation>
<Identifier Source="GRID">grid.34477.33</Identifier>
<Identifier Source="ISNI">0000000122986657</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morales-Vera</LastName>
<ForeName>Rodrigo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Agricultural and Forest Sciences, Catholic University of Maule, Center of Biotechnology of Natural Resources (CENBIO), Talca, Chile.</Affiliation>
<Identifier Source="GRID">grid.411964.f</Identifier>
<Identifier Source="ISNI">0000 0001 2224 0804</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crawford</LastName>
<ForeName>Jordan T</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>AECOM Corp, Richland, WA USA.</Affiliation>
<Identifier Source="GRID">grid.420742.7</Identifier>
<Identifier Source="ISNI">0000 0001 0549 9881</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bura</LastName>
<ForeName>Renata</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</Affiliation>
<Identifier Source="GRID">grid.34477.33</Identifier>
<Identifier Source="ISNI">0000000122986657</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gustafson</LastName>
<ForeName>Rick</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Seattle, Box 352100, WA 98195-2100 USA.</Affiliation>
<Identifier Source="GRID">grid.34477.33</Identifier>
<Identifier Source="ISNI">0000000122986657</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acetic acid</Keyword>
<Keyword MajorTopicYN="N">Biochemicals</Keyword>
<Keyword MajorTopicYN="N">Bioconversion</Keyword>
<Keyword MajorTopicYN="N">Bioproducts</Keyword>
<Keyword MajorTopicYN="N">Biorefinery</Keyword>
<Keyword MajorTopicYN="N">Fossil fuel use</Keyword>
<Keyword MajorTopicYN="N">Global warming potential</Keyword>
<Keyword MajorTopicYN="N">Life cycle assessment</Keyword>
</KeywordList>
<CoiStatement>Competing interestsThere are no competing interests involved in the research presented here.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>18</Hour>
<Minute>14</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32905422</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-020-01784-y</ArticleId>
<ArticleId IdType="pii">1784</ArticleId>
<ArticleId IdType="pmc">PMC7469289</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Materials (Basel). 2016 Jul 12;9(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28773687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1973 May;114(2):743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4706193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2012 Jun 7;9(71):1105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Nov;100(21):4919-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Jun 23;9:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28616077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Aug 11;9:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27525039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Chili</li>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Budsberg, Erik" sort="Budsberg, Erik" uniqKey="Budsberg E" first="Erik" last="Budsberg">Erik Budsberg</name>
</region>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<name sortKey="Crawford, Jordan T" sort="Crawford, Jordan T" uniqKey="Crawford J" first="Jordan T" last="Crawford">Jordan T. Crawford</name>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
</country>
<country name="Chili">
<noRegion>
<name sortKey="Morales Vera, Rodrigo" sort="Morales Vera, Rodrigo" uniqKey="Morales Vera R" first="Rodrigo" last="Morales-Vera">Rodrigo Morales-Vera</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000178 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000178 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32905422
   |texte=   Production routes to bio-acetic acid: life cycle assessment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32905422" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020